首页> 外文OA文献 >Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation
【2h】

Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation

机译:使用双向耦合中尺度SPH-DEM进行的流-质流模拟和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

First, a meshless simulation method is presented for multiphase fluid–particle flows with a two-way coupled Smoothed Particle Hydrodynamics (SPH) for the fluid and the Discrete Element Method (DEM) for the solid phase. The unresolved fluid model, based on the locally averaged Navier Stokes equations, is expected to be considerably faster than fully resolved models. Furthermore, in contrast to similar mesh-based Discrete Particle Models (DPMs), our purely particle-based method enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries and is applicable to both dilute and dense particle flows. Second, a comprehensive validation procedure for fluid–particle simulations is presented and applied here to the SPH–DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical models. Millimetre-sized particles are used along with three different test fluids: air, water and a water–glycerol solution. The velocity evolution for a single particle compares well (less than 1% error) with the analytical solution as long as the fluid resolution is coarser than two times the particle diameter. Two more complex multiple particle sedimentation problems (sedimentation of a homogeneous porous block and an inhomogeneous Rayleigh Taylor Instability) are also reproduced well for porosities 0.6⩽∊⩽1.0, although care should be taken in the presence of high porosity gradients. Overall the SPH–DEM method successfully reproduces quantitatively the expected behaviour in these test cases, and promises to be a flexible and accurate tool for other, realistic fluid–particle system simulations (for which other problem-relevant test cases have to be added for validation).
机译:首先,提出了一种用于多相流体-颗粒流的无网格模拟方法,其中流体采用了双向耦合的平滑粒子流体动力学(SPH),而固相则采用了离散元方法(DEM)。基于局部平均Navier Stokes方程的未解析流体模型预计比完全解析模型要快得多。此外,与类似的基于网格的离散粒子模型(DPM)相比,我们的纯基于粒子的方法享有缺乏指定网格的灵活性。它适用于诸如自由表面流或复杂,运动和/或相互啮合的几何体周围的流之类的问题,并且适用于稀和稠密颗粒流。其次,提出了一种用于流体-颗粒模拟的综合验证程序,并将其应用于SPH-DEM方法,该方法使用了3D流体柱中单个和多个颗粒沉积的模拟,并与分析模型进行了比较。毫米级的颗粒与三种不同的测试液一起使用:空气,水和水-甘油溶液。只要流体分辨率大于粒径的两倍,单个颗粒的速度演化就可以与分析溶液很好地比较(误差小于1%)。对于孔隙度为0.6⩽∊⩽1.0的情况,还可以很好地再现两个更复杂的多颗粒沉降问题(均质多孔块的沉降和不均匀的瑞利泰勒不稳定性),尽管在存在高孔隙度梯度的情况下也要小心。总体而言,SPH-DEM方法成功地定量再现了这些测试用例中的预期行为,并有望成为用于其他实际流体-粒子系统模拟的灵活而准确的工具(为此,必须添加其他与问题相关的测试用例进行验证) )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号